
The switchr Package

Gabriel Becker

October 31, 2024

Contents
1 Managing and populating package libraries 2

1.1 Creating and switching between package libraries . 2
1.2 Removing package libraries . 2
1.3 Representing package cohorts . 3
1.4 Representing and (re-)installing package cohorts/libraries . 4

2 Installing specific packages and package versions 4
2.1 Building consistent, historical package manifests . 4

3 Using switchr in dynamic documents 6

1

1 Managing and populating package libraries

1.1 Creating and switching between package libraries
Different versions of R packages are appropriate for different applications, including package development, solo anal-
ysis, and collaboration. switchr provides a framework for creating, populating, managing, and switching between
multiple package libraries from within an R session.

For safety within this vignette, we set the base switchr directory (the directory under which switchr libraries
will be used) to a temporary directory.

> library(switchr)
> switchrBaseDir(file.path(tempdir(), ".switchr"))
> reps = options("repos")[[1]]
> options(width=40)
> if(reps["CRAN"] == "@CRAN@") {
+ reps["CRAN"] = "https://cloud.r-project.org"
+ options(repos = reps)
+ }
> graceful_inet(TRUE)

We create and use switchr package libraries by referring to them by name using the switchTo() function as
seen below.

> switchTo("vign1")

When switching to a different package library, switchr displays messages indicating the (newly) active library
and some basic information about it1, which is of the form

[1] "Switched to the 'vign1' computing environment. "
[2] "29 packages are currently available."
[3] "Packages installed in your site library are suppressed."
[4] "To switch back to your previous environment type switchBack()"

The first time this code is run a "vign1" library is created and activated. By activate we mean that it replaces the
current User- and (by default) Site- library locations which R uses to find packages during the loading process.

To stop using "vign1" we simply call switchBack():

> switchBack()

When switching to a different library, switchr attempts to unload all packages (other than switchr itself and
its dependencies) in the currently loaded session. This generally works, but can occasionally lead to problems when
R has trouble fully unloading a package. We also note here that R’s design does not support the full unloading of
S3 methods. This can lead to packages being spontaneously reloaded when the S3 generic is called with particular
classes.

Users can indicate that packages should NOT be unloaded when switching libraries via the switchrDontUnload
function which sets a package specific option for the remainder of the R session.

1.2 Removing package libraries
switchr package libraries can be removed via the removeLib function, like so

> ### Not Run
> removeLib("mylibrary")

This removes the switchr library and all the packages installed therein.
1The reason these messages are not displayed as output for other code-blocks in this document is that the information is conveyed via messages,

which are not captured by the Sweave engine. We have chosen to use Sweave regardless due to its smaller dependency footprint.

2

1.3 Representing package cohorts
Empty package libraries are, of course, of limited use. The other main functionality switchr offers is installation
of packages from a wide variety of sources (git, svn, package repositories, and the CRAN Archive among them), both
individually and as cohorts.

We do this via a generalized form of a package repository called a package manifest, which includes a listing of
packages and the information switchr needs to install them (primarily location of their source code).

We can create a package manifest from scratch via the PkgManifest function, though there are convenience
functions for common use-cases such as Github packages

> man = PkgManifest(name = "fastdigest",
+ url = "https://github.com/gmbecker/fastdigest",
+ type = "git")
> man

A package manifest (PkgManifest object)

Contains 1 packages and 4 dependency repositories

Packages:
name type

1 fastdigest git

The ‘GithubManifest‘ convenience function builds manifests from GitHub username/repository pairs for package
sources residing in the root directory of the master branch for the specified repository.

> man2 = GithubManifest("gmbecker/fastdigest",
+ "gmbecker/RCacheSuite")
> man2

A package manifest (PkgManifest object)

Contains 2 packages and 4 dependency repositories

Packages:
name type

1 fastdigest git
2 RCacheSuite git

The ‘GithubManifest‘ function accepts (a subset of) the same shorthand for locations within Github repositories as
Wickham’s install_github function from the devtools package. “/”s after the first indicate a subdirectories
within the repository, and a “@@” indicates the (non-master) branch the manifest should point to. Package names that
differ from the name of the repository are indicated via the argument names associated with the shorthand strings.

> man3 = GithubManifest(redland = "ropensci/redland-bindings/R/redland")
> man3

A package manifest (PkgManifest object)

Contains 1 packages and 4 dependency repositories

Packages:
name type

1 redland git

>

3

1.4 Representing and (re-)installing package cohorts/libraries
Beyond package manifests, switchr also supports seeding manifests, which extend package manifests by indicating
a subset of the packages listed in the manifest, specific package-version information, or both.

> ## NOT RUN due to peculiarities of CRAN build system wrt installed.packages()
> lman = libManifest()

Package or seeding manifests can then be used to seed switchr libraries. During the new-library creation process,
all packages listed in the seed - typically a seeding manifest, package manifest, or specially-purposed package reposi-
tory - are installed. In the case that a seeding manifest is used, the exact, specified versions of the indicated packages
are retrieved and installed, while for a package manifest the latest versions available are used.

We specify a seed via the seed argument to the switchTo function, like so:

> ## NOT RUN
> switchTo("vign2", seed = lman)

The above code will create a new switchr library called vign2 and populate it with the package versions listed in lman
- i.e., the packages installed in the library used to build this vignette.

2 Installing specific packages and package versions
switchr also provides the install_packages function for installing specific packages or sets of packages
from a variety of sources, including traditional repositories and package manifests. This function supports package
dependencies, including non-repository to non-repository dependecies (e.g. between two or more packages on GitHub)
on systems able to build packages from source.

> ## NOT RUN
> install_packages("RCacheSuite", man2)

We can also use install_packages to install specific versions of the desired packages.

> ## NOT RUN
> install_packages("fastdigest",
+ versions = c(fastdigest= "0.5-0"),
+ man = man2)
>

Note, however, that installing individual, non-current package versions without specifying versions for those pack-
ages’ dependencies is likely to result in undefined package behavior, as the most current versions of the dependencies
will be used. Packages will often fail to install entirely, though “successful” installation via this mechanism should not
be taken as a guarantee that the packages will behave as expected.

2.1 Building consistent, historical package manifests
switchr does include experimental support for building a consistent manifest based on a specific version of a single
package. This uses Csardi’s database of R package metadata developed for his crandb package.

The cranPkgVersManifest function accepts a (CRAN) package and a specific version. It then queries
Csardi’s database to determine versions of the pacakge’s dependencies which were concurrent with the first or last
day that the specified version was the current release on CRAN.

> oldman = cranPkgVersManifest(pkg = "randomForest", vers = "4.6-5")
> oldman

4

https://github.com/metacran/crandb

A seeding manifest (SessionManifest object)

Describes a cohort of 3 package versions.
3 packages are listed in the underlying package manifest

Package versions:
name version

1 randomForest 4.6-5
2 RColorBrewer 1.0-5
3 MASS 7.3-8

The resulting package manifest, while not a seeding manifest, points to source tarballs within the CRAN Web
Archive corresponding to exact contemporary versions of the package and its depencies. Currently only packages
published on CRAN are supported.

> manifest_df(oldman)$url

[1] "http://cran.r-project.org/src/contrib/Archive/randomForest/randomForest_4.6-5.tar.gz"
[2] "http://cran.r-project.org/src/contrib/Archive/RColorBrewer/RColorBrewer_1.0-5.tar.gz"
[3] "http://cran.r-project.org/src/contrib/Archive/MASS/MASS_7.3-8.tar.gz"

Users can also leverage Csardi’s database to retreive a manifest representing the state of CRAN corresponding to
the release of a particular R version, retroactively creating something similar to the repositories created by de Vries’
miniCRAN and its successor, Revolution Analytic’s checkpoint.

> oldman2 = rVersionManifest("3.1.1")
> oldman2

A seeding manifest (SessionManifest object)

Describes a cohort of 4628 package versions.
4628 packages are listed in the underlying package manifest

Package versions:
name version

1 "A3" "0.9.2"
2 "abc" "1.8"
3 "abcdeFBA" "0.4"
4 "ABCExtremes" "1.0"
... "..." "..."
4624 "zoeppritz" "1.0-4"
4625 "zoo" "1.7-11"
4626 "zooimage" "3.0-5"
4627 "zoom" "2.0.4"
4628 "zyp" "0.10-1"

This results a manifest of tarball locations, as above. It will contain locations in the currently-selected CRAN
mirror and the CRAN Web Archive, depending on whether a particular package has been updated since the specified
R version.

> head(manifest_df(oldman2)$url)

5

[1] "http://cran.r-project.org/src/contrib/Archive/A3/A3_0.9.2.tar.gz"
[2] "http://cran.r-project.org/src/contrib/Archive/abc/abc_1.8.tar.gz"
[3] "http://cran.r-project.org/src/contrib/Archive/abcdeFBA/abcdeFBA_0.4.tar.gz"
[4] "http://cran.r-project.org/src/contrib/Archive/ABCExtremes/ABCExtremes_1.0.tar.gz"
[5] "http://cran.r-project.org/src/contrib/Archive/ABCoptim/ABCoptim_0.13.11.tar.gz"
[6] "http://cran.r-project.org/src/contrib/Archive/ABCp2/ABCp2_1.1.tar.gz"

3 Using switchr in dynamic documents
While we chose not to depend on Xie’s knitr package, switchr can be used to enhance reproducibility of analyses
residing in dynamic documents which are processed with that system, e.g. .Rmd files. To do this, users need simply
ensure that knitr and its dependencies are not unloaded during the library switching process. This is most safely
achieved via the switchrNoUnload which disables the unloading of packages when switching libraries.

> ## NOT RUN
> switchrNoUnload(TRUE)

In the knitr case, for example, this function can be called from the outer R session or — preferably — from an
early, intialization code chunk within the dynamic document itself.

6

	Managing and populating package libraries
	Creating and switching between package libraries
	Removing package libraries
	Representing package cohorts
	Representing and (re-)installing package cohorts/libraries

	Installing specific packages and package versions
	Building consistent, historical package manifests

	Using switchr in dynamic documents

